Associative encoding in posterior piriform cortex during odor discrimination and reversal learning.

نویسندگان

  • Donna J Calu
  • Matthew R Roesch
  • Thomas A Stalnaker
  • Geoffrey Schoenbaum
چکیده

Recent proposals have conceptualized piriform cortex as an association cortex, capable of integrating incoming olfactory information with descending input from higher order associative regions such as orbitofrontal cortex and basolateral amygdala (ABL). If true, encoding in piriform cortex should reflect associative features prominent in these areas during associative learning involving olfactory cues. We recently reported that neurons in anterior piriform cortex (APC) in rats exhibited significant plasticity in their responses to odor cues during associative learning. Here, we have repeated this study, recording from neurons in posterior piriform cortex (PPC), a region of piriform cortex that receives much stronger input from ABL. If associative encoding in piriform cortex is driven by inputs from ABL, then we should see more plasticity in PPC neurons than we observed in APC. Consistent with this hypothesis, we found that PPC neurons were highly associative and appeared to be somewhat more likely than neurons recorded in APC to alter their responses to the odor cues after reversal of the odor-outcome associations in the task. Further, odor-selective PPC populations exhibited markedly different firing patterns based on the valence of the odor cue. These results suggest associative encoding in piriform cortex is represented in a topographical fashion, reflecting the stronger and more specific input from olfactory bulb concerning the sensory features of odors in anterior regions and stronger input from ABL concerning the meaning of odors in posterior regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Associative encoding in anterior piriform cortex versus orbitofrontal cortex during odor discrimination and reversal learning.

Recent proposals have conceptualized piriform cortex as an association cortex, capable of integrating incoming olfactory information with descending input from higher order associative regions such as orbitofrontal cortex (OFC). If true, encoding in piriform cortex should reflect associative features prominent in these areas during associative learning involving olfactory cues. To test this hyp...

متن کامل

Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training.

Interconnections between orbitofrontal cortex (OFC) and basolateral amygdala (ABL) are critical for encoding and using associative information about the motivational significance of stimuli. Previously, we reported that neurons in OFC and ABL fired selectively to cues during odor discrimination learning and reversal training. Here we conducted an analysis of correlated firing in the cell pairs ...

متن کامل

Segregation of Odor Identity and Intensity during Odor Discrimination in Drosophila Mushroom Body

Molecular and cellular studies have begun to unravel a neurobiological basis of olfactory processing, which appears conserved among vertebrate and invertebrate species. Studies have shown clearly that experience-dependent coding of odor identity occurs in "associative" olfactory centers (the piriform cortex in mammals and the mushroom body [MB] in insects). What remains unclear, however, is whe...

متن کامل

The role of piriform associative connections in odor categorization

Distributed neural activity patterns are widely proposed to underlie object identification and categorization in the brain. In the olfactory domain, pattern-based representations of odor objects are encoded in piriform cortex. This region receives both afferent and associative inputs, though their relative contributions to odor perception are poorly understood. Here, we combined a placebo-contr...

متن کامل

Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning.

Orbitofrontal cortex (OFC) is part of a network of structures involved in adaptive behavior and decision making. Interconnections between OFC and basolateral amygdala (ABL) may be critical for encoding the motivational significance of stimuli used to guide behavior. Indeed, much research indicates that neurons in OFC and ABL fire selectively to cues based on their associative significance. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2007